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SUMMARY

In this paper, we report our development of an implicit hybrid flow solver for the incompressible Navier–
Stokes equations. The methodology is based on the pressure correction or projection method. A fractional
step approach is used to obtain an intermediate velocity field by solving the original momentum equations
with the matrix-free implicit cell-centred finite volume method. The Poisson equation derived from the
fractional step approach is solved by the node-based Galerkin finite element method for an auxiliary
variable. The auxiliary variable is closely related to the real pressure and is used to update the velocity
field and the pressure field. We store the velocity components at cell centres and the auxiliary variable
at cell vertices, making the current solver a staggered-mesh scheme. Numerical examples demonstrate
the performance of the resulting hybrid scheme, such as the correct temporal convergence rates for both
velocity and pressure, absence of unphysical pressure boundary layer, good convergence in steady-state
simulations and capability in predicting accurate drag, lift and Strouhal number in the flow around a
circular cylinder. Copyright q 2007 John Wiley & Sons, Ltd.
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178 S. TU AND S. ALIABADI

1. INTRODUCTION

This paper describes the development of a numerical method to solve the incompressible Navier–
Stokes equations (NSE), which can be expressed as

∇ ·u= 0 (1)

�

[
�u
�t

+ (u · ∇)u
]

= �g + ∇ · r (2)

with

r= −pI + �(∇u + ∇uT)

on domain (x, t) ∈ �× (0, T ). Here � is the spatial domain with boundary ��. The time domain
is represented by (0, T ). In Equations (1) and (2), �, u, p, g and � are the fluid density, velocity,
pressure, gravitational force and dynamic viscosity, respectively. Equations (1) and (2) are com-
pleted by an appropriate set of boundary and initial conditions. Based on the velocity, the entire
boundary can be generally categorized into ��= �D ∩�n ∩ �N (the notation follows that in [1])
where

�D: u=ub, i.e. all components of velocity are specified, e.g. inflow boundary .
�n: u ·n= (u ·n)b, i.e. only the velocity component normal to the boundary is specified,
e.g. symmetry boundary, and
�N : r ·n= (r ·n)b, e.g. outflow boundary.

In Equations (1) and (2), the unknowns are the fluid velocity and the pressure. Numerous
numerical methods for solving Equations (1) and (2) have been proposed and studied over the last
four decades. Generally, the methods can be grouped into two broad categories, coupled methods
and segregated methods.

In the coupled approach, the momentum equations and the continuity equations are solved
simultaneously. The artificial compressibility (AC) method pioneered by Chorin [2] is such a
coupled method. In this method, an artificial pressure time derivative is added to the continuity
equation, eliminating the singularity when the original continuity equation is discretized and the
artificial term will vanish upon convergence in the steady-state simulations. If the dual-time-
stepping technique is used, the AC method is able to solve unsteady problems. Another method
that was designed for low-Mach number flows can also be used to solve incompressible flows. This
method preconditions the original compressible NSE to modify the eigenvalues of the hyperbolic
equation system [3]. Note that this method does not start from the incompressible NSE. In the
finite element (FE) community, many researchers use stabilized finite element methods (FEMs) to
solve the incompressible NSE simultaneously. These stabilization techniques including two main
approaches, the streamline upwinded/Petrov Galerkin (SUPG) [4] combined with the pressure
stabilized Petrov Galerkin (PSPG) [5, 6], and the Galerkin least square (GLS) [7] method, play a
crucial role in the success of this type of methods.

Among the category of the segregated methods, the pressure correction method is the most
widely used for solving the incompressible NSE. The pressure correction method uses a fractional
step approach to first obtain an intermediate velocity field which is generally not divergence-free.
A Poisson equation is usually solved for the pressure correction. The final velocity is corrected to
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satisfy the discrete divergence-free constraint. The pressure correction method is also viewed as
one of the so-called projection methods. Guermond et al. provide a comprehensive overview of the
projection methods in [8] where other projection methods such as the velocity correction method
and consistent splitting method are also reviewed (cf. [8] and references therein). Other variants
of the projection method not covered in [8] includes the SIMPLE family methods pioneered by
Caretto et al. [9] and the PISO method proposed by Issa [10].

A successful numerical solver for incompressible NSE must address the following issues:

• Accuracy: A numerical scheme should be at least second-order accurate in both space and
time. In addition, the claimed spatial and temporal accuracy must be numerically verified.
This can be done by conducting convergence rate tests.

• Efficiency: Implicit schemes are preferred since larger timesteps can be used without loss of
accuracy and stability. Since implicit schemes result in large, sparse and usually ill-conditioned
linear systems, robust and efficient preconditioners should be employed to accelerate the
convergence of any linear system solvers.

• Applicability: Most engineering applications involve complex domains. Unstructured meshes
are indispensable to discretize complex domains. Therefore, a numerical solver must be
capable of handling unstructured meshes. In addition, a 2D solver must be able to be easily
extended for 3D applications. Due to this reason, the vorticity-stream function formulation
is not considered as practical because of its 2D limitation.

Over the years, the authors of this paper have developed a set of incompressible flow solvers using
SUPG/PSPG stabilized FEM for incompressible free-surface flows [11] and contaminant dispersion
flows [12]. Though we have achieved tremendous success in solving real engineering problems,
we realized that the solver can be improved. The main drawback with the stabilized FE solver is
the difficulty with the determination of the stabilization parameters. The stabilization parameters
in the SUPG/PSPG stabilized FE solver rely heavily on the definition of the characteristic element
length. For isotropic unstructured meshes, the characteristic length is well defined. However, for
high Reynolds number flows where the high aspect ratio elements are usually used inside the
boundary layer, the element length is not well defined. Inappropriate amount of stabilization, too
much or too little, causes the loss of accuracy inside the boundary layer. The finite volume (FV)-
based solver CaMEL Aero [13] we developed for compressible flows, however, is very insensitive
to the aspect ratio of elements and has been shown to be able to predict accurate aerodynamic
forces for high-Reynolds number flows. Motivated by this realization, we would like to combine
the finite volume method (FVM) and the FEM to develop a new hybrid solver for incompressible
flows. The new solver is expected to take advantage of both methods and avoid the shortcomings.

In this paper, we do not aim to propose new formulations. The formulation we are using is
actually the pressure-correction (projection) method similar to that of Timmermans et al. [14]. The
aim of this paper is to present our implementation of the projection method with a hybrid numerical
discretization for these formulations. We use the cell-centred FVM to solve the momentum equation
for the intermediate velocity and the node-based Galerkin FEM to solve the Poisson equation for
the pressure correction. Note that in our implementation, the pressure does not directly enter
the momentum equation. Instead, an auxiliary variable closely related to the pressure takes the
place of pressure in the momentum equations. Because the velocity components and the auxiliary
variable are placed at different locations on the mesh, the current hybrid scheme can be viewed
as a staggered-mesh scheme. However, our staggered mesh deployment is distinct from the more
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180 S. TU AND S. ALIABADI

traditional staggered mesh scheme where the pressure is put on the cell centre and the velocity is
put on the cell interfaces. In our deployment, the velocity unknowns are put at the cell centres and
the auxiliary variable is put at the mesh vertices. This deployment makes it convenient to compute
the gradients of the auxiliary variable using local FE basis function, which is required for solving
the momentum equations. Numerical experiments show that the current staggered deployment also
avoids the notorious velocity–pressure odd–even decoupling phenomenon. Another key feature of
the current hybrid scheme is that it allows the same order of spatial discretization for velocity
and pressure. In other words, the velocity takes a second-order accurate reconstruction in the
FV framework and the pressure uses linear basis functions in the FE framework. The pressure
is updated carefully to ensure it is free of any unphysical boundary layer. Numerical results will
show that the current hybrid implementation is superconvergent in terms of the spatial convergence
rates for both velocity and pressure. The correct temporal convergence rates can also be obtained
for both velocity and pressure.

The rest of this paper is organized as follows. In Section 2, we describe the solution procedure
in detail. Section 3 provides key components of our FV solver for the momentum equations.
Following that is Section 4 where we present a brief description of the FE-based Poisson solver.
In Section 5, we provide more information on how to compute the velocity gradients inside each
cell and the solution and its derivatives at vertices. Three test cases are presented in Section 6 to
demonstrate the performance of the current solver. Finally in Section 7, we summarize this paper
with final concluding remarks.

2. SOLUTION PROCEDURE

In this section, we describe the solution procedure in detail. First, we explain the storage locations
of the unknowns. Illustrated in Figure 1, cell centres store the velocity components and pressure
and mesh nodes store an auxiliary variable q that will be explained later. The auxiliary variable
is closely related to the pressure and stored at a different location from the velocity components.
For this reason, we consider our implementation a staggered-grid scheme. However, it must be
pointed out that the current scheme is distinct from other conventional staggered grid schemes
where velocity components are usually stored at cell edges and the pressure at cell centres.

Briefly, the solution procedure follows a segregated approach to decouple the pressure from
the velocity. The velocity field is updated by solving the momentum equation provided that a
known pressure field is given as a source term, through a cell-centred FV discretization that will
be described in next section. The pressure does not directly enter the momentum equation. Instead,

velocity and pressure 

auxiliary variable 
u, v, p

u, v                                        p

q

q

q q

q

Figure 1. Storage locations for unknowns on an unstructured mesh.
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an auxiliary variable, which is closely related to the pressure, takes the place of pressure in the
momentum equation, providing pressure gradient information. Because only pressure gradients
instead of the pressure itself are needed in the momentum equation, we put the auxiliary variable
on the vertices of cells. This deployment provides a convenient way to evaluate the pressure
gradient using the local FE basis functions without the need of reconstruction as required for the
velocity field. The incremental value of the auxiliary variable is computed by solving a Poisson
equation to update the velocity field. After the final velocity field is determined, the pressure can
be updated according to the auxiliary variable and the velocity divergence field. The rest of this
section explains the solution procedure in more detail.

2.1. Updating the velocity field

To facilitate our analysis, we rewrite the momentum equation (2) as

�
�u
�t

+ ∇ p= �(g − u · ∇u) + �∇2u (3)

where we utilize the fact that the divergence of the viscous stress tensor is �(∇2u + ∇(∇ ·u)),
which is just �∇2u when ∇ ·u= 0.

Because the pressure field is not available at the same time level as the velocity when solving the
momentum equation, we use the fractional step method to first compute an intermediate velocity ũ

�
�1ũ + �0un + �−1un−1

�t
+ ∇qn = �(g − ũ · ∇ũ) + �∇2ũ (4)

where the time-dependent term of Equation (3) has been discretized using the backward dif-
ference formula (BDF). For first-order time accurate scheme (BDF1), �1 = 1.0, �0 =−1.0 and
�−1 = 0.0 and for second-order time accurate scheme (BDF2), �1 = 1.5, �0 = −2.0 and �−1 = 0.5.
In Equation (4), an obvious choice for q is p, but for the time being, q can be considered as
an auxiliary variable that is closely related to the real pressure p. A correction step is used to
update the velocity field to obtain the final velocity at the end of the timestep, un+1, which can
be expressed as

��1
un+1 − ũ

�t
+ ∇q ′ = 0 (5)

where q ′ is the incremental value of q. un+1 can therefore be updated according to Equation (5), i.e.

un+1 = ũ − �t

��1
∇q ′ (6)

We expect ∇ ·un+1 = 0 at the end of the timestep. Hence, Equation (6) happens to be the Hodge
decomposition of the intermediate velocity field, ũ, into the sum of a divergence-free vector field,
un+1, and a curl-free vector field, �t∇q ′/(��1). Due to this, the correction step is also referred to
as a projection step. Before Equation (6) can be utilized, we must first obtain the updated q ′ field.

Taking the divergence of Equation (6) and considering ∇ ·un+1 = 0, we obtain

∇2q ′ = ��1
�t

∇ · ũ (7)
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182 S. TU AND S. ALIABADI

which is a Poisson equation for q ′. We want to enforce the normal component of ũ and un+1 to
be the correct boundary conditions, i.e.

n · ũ=n ·un+1 = (n ·u)b (8)

where (n ·u)b is the prescribed normal component of the velocity on the boundary �D and �n .
Besides, Equations (5) and (8) imply

n · ∇q ′ = 0 on �D and �n (9a)

In addition, we also specify

q ′ = [�n · (∇ũ + ∇ũT) ·n]b − qn on �N (9b)

which comes from the stress-free assumption on �N . Actually q ′ = 0 on �N is more commonly
used in the literature.

Equation (7) together with the boundary conditions Equations (8) and (9) provide a well-posed
Poisson equation that can be solved using any Poisson solver. A FE-based Poisson solver will be
described in Section 4.

After q ′ field is available, Equation (6) can be invoked to update the velocity field. The resulting
velocity field will be divergence-free and considered as the final solution. Also the auxiliary variable
will be updated as qn+1 = qn + q ′.

2.2. Updating the pressure field

The real pressure, pn+1 can be seemingly updated according to

pn+1 = qn+1 ≡ qn + q ′ (10)

However, q suffers from an unphysical homogeneous Neumann boundary condition Equation (9a)
on �D and �n . If p is updated through Equation (10), p will inherit this defect. This artificial
pressure Neumann boundary condition causes the loss of accuracy in the pressure field. A direct
effect is that the temporal convergence rate of pressure will not reach the intended value (e.g.
second order for BDF2). To cure this, we need to find an alternative way to update the pressure.
The new way must yield correct physical pressure Neumann boundary condition. Timmermans
et al. [14] propose such a cure. In their approach the pressure is updated via

pn+1 = pn + p′ − �∇ · ũ (11)

Note that in Equation (11), p instead of q is used in the momentum equation, which is different
from our current approach. Guermond and Shen [15] prove that Equation (11) yields about 1.5th
order temporal accuracy in pressure even if the velocity is fully second-order accurate in time.

In our implementation, we use the auxiliary variable q in the momentum equation. Therefore,
our variant to Equation (11) becomes

pn+1 = qn + q ′ − �∇ · ũ (12)

Recall that p is stored at the cell centre and q at the cell vertex (cf. Figure 1). In practice, we
update p according to Equation (47) using FE basis functions that will be given in Section 4. The
convergence tests we will conduct in Section 6 indicate that Equation (12) yields fully second-order
convergence in time for both velocity and pressure. Both Equations (11) and (12) lead to correct
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pressure Neumann boundary conditions on �D and �n , which can be obtained by taking the dot
product of the unit outward boundary normal vector with the original momentum equation (3), i.e.

n · ∇ pn+1 = n ·
(

�

(
−�un+1

�t
+ g − un+1 · ∇un+1

)
+ �∇2un+1

)
(13)

Note that on �D and �n , either �u/�t = 0 (e.g. inflow) or n ·u= 0 (e.g. symmetry plane), so
the true pressure Neumann boundary condition can be simplified to

n · ∇ pn+1 =n · [�(g − un+1 · ∇un+1) + �∇2un+1] (14)

Keep in mind that Equation (14) is the physical pressure Neumann boundary condition. Now
we proceed to prove Equation (12) leads to a pressure Neumann boundary condition that closely
approximates Equation (14). From Equation (12), we can derive

∇q ′ =∇ pn+1 − ∇qn + ∇(�∇ · ũ) (15)

Substituting Equation (15) into Equation (5) and taking the sum of Equations (4) and (5) to
obtain

�
�1un+1 + �0un + �−1un−1

�t
+ ∇ pn+1 = �(g − ũ · ∇ũ) + �∇2ũ − ∇(�∇ · ũ) (16)

By invoking the identity ∇2ũ≡∇(∇ · ũ) − ∇ × ∇ × ũ and also noticing from Equation (5) that
∇ × ∇ × ũ=∇ ×∇ ×un+1, Equation (16) can be rewritten as

�
�1un+1 + �0un + �−1un−1

�t
+ ∇ pn+1 = �(g − ũ · ∇ũ) − �∇ × ∇ ×un+1 (17)

Taking the dot product of the unit outward boundary normal vector with Equation (17) and
using the same reasoning to derive Equation (14) yields

n · ∇ pn+1 =n · [�(g − ũ · ∇ũ) − �∇ × ∇ ×un+1] (18)

On the other hand, by invoking the identity ∇2un+1 ≡∇(∇ ·un+1) − ∇ × ∇ ×un+1 and
∇ ·un+1 = 0, Equation (14) can be rewritten as

n · ∇ pn+1 =n · [�(g − un+1 · ∇un+1) − �∇ × ∇ ×un+1] (19)

which is the true physical Neumann boundary condition for pressure. Because Equations (18)
and (19) utilize the operator ∇ × ∇ ×, they are referred to as the rotational form in [15].

As can be seen, the only difference between Equations (18) and (19) is the advection term. For
Stokes flows where advection is absent, Equations (18) and (19) are exactly the same. For more
general flows, we observe the following for typical portions of the boundary �D and �n .

• On solid walls where the no-slip boundary condition un+1 = ũ= 0 is usually applied,
Equations (18) and (19) are the same.

• On symmetry boundaries that are aligned with the coordinate axis, n · (un+1 · ∇un+1) =
n · (ũ · ∇ũ) = 0. So Equations (18) and (19) are still the same.
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184 S. TU AND S. ALIABADI

• On inflow boundaries, Equations (18) and (19) are not the same, but Equation (18) is a
reasonably good approximation to Equation (19) because at inflow, the velocity gradients are
usually small.

Note that on �N Dirichlet boundary condition (cf. Equation (9b)) instead of the Neumann
boundary condition is used for pressure.

Based on the observations above, we can conclude that the pressure updating strategy using
Equation (12) truly yields correct pressure Neumann boundary conditions. The numerical test
presented in Section 6 will verify this conclusion.

For clarity, let us summarize the entire solution procedure as follows.
Given an initial velocity field u (not necessarily divergence-free) and pressure field q, do
Step 1: Solve Equation (4) to obtain the intermediate velocity field ũ.
Step 2: Solve Equation (7) to obtain the incremental auxiliary variable q ′.
Step 3: Update the pressure pn+1 through Equation (12).
Step 4: Update the velocity un+1 through Equation (6).
Go to Step 1 to start the next timestep.
As can be seen from the above, the solution procedure is very efficient. Inside each physical

timestep, only an advection–diffusion-typed momentum equation (Step 1) and a Poisson equation
(Step 2) are solved. Step 3 and Step 4 are done with trivial cost.

3. MATRIX-FREE FINITE VOLUME SOLVER FOR MOMENTUM EQUATIONS

The momentum equation (4) is a fully implicit non-linear advection–diffusion equation system with
pressure gradients and gravity as source terms. We use the cell-centred FV method to discretize
this system and solve the discretized system with the Newton–Raphson iterative method. This
corresponds to Step 1 in the solution procedure described in the previous section. In this paper,
we follow exactly the same procedure as in our FV compressible flow solver, CaMEL Aero [13].
The rest of this section reviews some key ingredients of the FV solver.

3.1. Finite volume discretization

After the computational domain is discretized into conforming (without hanging nodes) cells
(hybrid triangular/quadrilateral cells are allowed), the FV formulation can be written for each
control volume. Since the current FV solver is cell-centred, i.e. the control volume is the cell itself,
the velocity unknowns are stored at the cell centroids (cf. Figure 1). Following the standard FV
discretization, we can obtain the semi-discrete form for cell i(

du
dt

)
i
+ R(u) = 0

where R(u) = 1
|�i |

∫
��i

H ·n d�. HereH includes both inviscid and viscous fluxes, n is the outward
unit normal vector of the faces surrounding cell i and |�i | is the volume of cell i. Assuming the
control volume is composed of piecewise linear facets, we can use the one-point integration rule
for the boundary integral. The boundary integral can be approximated with

R(u) = 1

|�i |
nf∑
k=1

(H ·n�s)k (20)
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r ij

niji

L R

j

Figure 2. Stencil to compute the fluxes across the cell interface.

where nf is the number of faces of the control volume and �s the area (length in 2D) of kth face of
cell i. The following two sub-sections provide some details in computing the inviscid and viscous
fluxes across the face shared by cell i and cell j (cf. Figure 2). Note that in Figure 2 the location
of the interface is denoted by ij.

3.1.1. Inviscid flux. The inviscid flux takes the general form of the flux vector splitting scheme
widely used as an approximate Riemann solver in compressible flow solvers.

FINV = �+
i ju

L
i j + �−

i ju
R
i j (21)

where the second-order accurate reconstruction is used to compute the left state and the right state
of the solution at the interface

uLi j = ui + (xi j − xi ) · ∇ui

uRi j = u j + (xi j − x j ) · ∇u j (22)

and �±
i j = (�i j ± |�i j |)/2 representing the positive and negative eigenvalues of the inviscid flux

Jacobian matrix. A unique solution, ui j , at the cell interface must be obtained to evaluate �i j =
n ·ui j , which is the advection velocity normal to the interface. We use the following formula to
compute ui j :

ui j = 0.5um + (xi j − xm) · ∇um (23)

where ‘m’ denotes the centre point between cell centroids ‘i’ and ‘j’. In Equation (22), um =
0.5(ui + u j ) and xm = 0.5(xi + x j ) obviously. However, there are two choices for ∇um . One is
∇um = 0.5(∇ui + ∇u j ) which is simply the arithmetic average of the gradients at two adjacent
cell centroids. The other is ∇um =∇ui j which is the gradient at the interface and remains to be
defined later. The former choice has been more conventionally used in the literature. However, we
claim that the latter yields more accurate results for unevenly spaced grids. This can be confirmed
by considering 1D unevenly spaced grids with zero gradients (e.g. spatially first-order scheme) in
two adjacent cells. In this case, ∇um =∇ui j that is generally non-zero provides some correction
value to 0.5(ui + u j ), which is more accurate if the grid is not evenly spaced.

3.1.2. Viscous flux. The viscous flux is computed according to

FVIS =n · (�∇ui j ) (24a)
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186 S. TU AND S. ALIABADI

or

FVIS =n · [�(∇ui j + ∇uTi j )] (24b)

if the stress-form is used for viscous terms.
Therefore, the velocity gradient across the cell interface is required to compute the viscous

flux. For unstructured meshes, there is no explicit line structure as in structured meshes. Hence,
obtaining the gradient of a velocity component requires special attention. Mathur and Murphy [16]
adopted a sophisticated formula to compute the gradient at the face ij. Denoting a component of
u with u, we have

∇ui j = u j − ui
�ri j ·n n +

(
∇ui j − ∇ui j ·�ri j

�ri j ·n n

)
(25)

where ∇ui j = 1
2 (∇ui + ∇u j ), �ri j is the displacement vector connecting cell centroids i and j, and

n is the unit normal of the face ij (cf. Figure 2). The idea behind Equation (25) is that the gradient
at the face is divided into two components. The first component is the gradient in the direction
normal to the face and computed by the first term of Equation (25). The second component is
computed by averaging the gradients at cell centroids and removing the component normal to the
face.

Note that ∇ui j computed according to Equation (25) serves two purposes. One is to provide
information for computing the viscous flux in Equation (24). The other is to provide the information
required in Equation (23) to compute the unique solution at the cell interface.

3.2. Implicit time integration

We adopt the implicit backward Euler difference formula (BDF) for the time integration

�1un+1 + �0un + �−1un−1

�t
+ R(un+1) = 0 (26)

First-order (BDF1) or second-order (BDF2) scheme can be chosen depending on the values of
the coefficients �1, �0 and �−1. We can use G(u) to denote the left-hand side of Equation (26).
Therefore, Equation (26) can be expressed as

G(u) = 0 (27)

which is a non-linear equation system. To solve Equation (27), we use the standard Newton–
Raphson iterative method

J�u= −G(u) (28)

where J is the Jacobian matrix and can be computed as

J≡ �G
�u

= �1
�t

I + �R
�u

= �1
�t

I + J̃ (29)

where J̃ denotes the contribution of J from the spatial flux terms and I is the identity matrix.
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Remarks

• For transient simulations, BDF1 or BDF2 can be chosen. The user provides a proper value
of timestep. During each physical timestep, several sub-iterations are performed to drive the
unsteady residual (defined as the root-mean-square (RMS) of G(U) in Equation (27) over the
whole computational domain) to reach the pre-specified tolerance (measured as the order of
magnitude dropped). Three order drop of the magnitude of the residual during each timestep
is usually sufficient for the accuracy.

• For steady-state simulations, BDF1 is always used. Inside each physical timestep, only one
sub-iteration is performed. Sufficient number of timesteps are run to drive the steady residual
(defined as the RMS of R(U) in Equation (20) over the whole computational domain) to reach
the pre-specified tolerance.

3.3. Jacobian-free GMRES solver

Inside each non-linear Newton–Raphson iteration, a linear system described as Equation (28) must
be solved. This linear system is usually huge, sparse and ill-conditioned. The generalized minimal
residual method (GMRES) [17] has been widely used to solve this kind of linear system. Because
the GMRES algorithm involves only matrix–vector multiplication, it is unnecessary to form the
Jacobian matrix explicitly. We are able to approximate the matrix–vector product using [18]

J̃v≈[R(u + �v) − R(u)]/� (30)

where R is evaluated according to Equation (20). Equation (30) can be shown to be the first-
order Taylor series expansion approximation to the multiplication of the Jacobian matrix, J̃, and
the Krylov vector, v. Obviously, only the spatial contribution J̃ in Equation (29) needs to be
approximated in such a way because the time-dependent term can be evaluated exactly.

In Equation (30), the choice of � is a balance between the approximation accuracy and the
floating point rounding error. It is as much of art as science. We use the following formula to
obtain �:

�= �
‖u‖2
‖v‖2 (31)

where � is usually taken as the square root of the machine zero, which is about 10−8–10−7 on
most platforms.

This approximation has the following advantages: (i) avoid the difficulty and cost in forming
the Jacobian matrix. For high-order FV solvers, the analytic evaluation of the Jacobian matrix is
not readily available because of the big stencil involved; (ii) save a significant amount of memory
for storing the Jacobian matrix. Even though the sparse Jacobian matrix could be stored in a
compressed way [17], the storage saving is still significant. Of course, the disadvantage of not
forming the Jacobian matrix is: we have to evaluate the function R a number of times depending
on the size of the Krylov space.

3.4. Matrix-free LU-SGS preconditioning

The convergence performance of the GMRES algorithm is highly related to the preconditioning.
In CaMEL Aero [13], we adopt the lower-upper symmetric Gauss–Seidel (LU-SGS) method [19]
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as a preconditioning technique. As mentioned in the previous sub-section, it is not easy to form
the Jacobian matrix analytically in high-order FV solvers. In contrast, the Jacobian matrix of the
low-order (assuming the solution is constant inside the control volume, i.e. first-order accurate)
flux function can be trivially obtained and is more diagonally dominant and more compact than
the high-order Jacobian matrix. Therefore, the low-order Jacobian matrix is a good candidate as
preconditioner to the high-order Jacobian matrix. In this paper, we directly follow what we did
in our compressible solve, CaMEL Aero [13], with slight changes. In CaMEL Aero, we use the
simplest and most dissipative flux function, the local Lax–Friedrich (LF) flux to establish the
preconditioning matrix. The local LF flux normal to the cell interface can be expressed as

FluxLF =T−1{ 12 [F(Tui ) + F(Tu j ) − �∗(Tu j − Tui )]} (32)

where i and j are the indices of the left and right adjacent cells of the face, respectively, T is
the orthonormal rotation matrix of the face, and �∗ is the velocity normal to the interface. �∗ is
determined from the arithmetic average of the left and the right states |Tui +Tu j |/2. The difference
between the current implementation and in CaMEL Aero is that the speed of sound does not enter
the evaluation of �∗ in the current incompressible flow environment.

For the flux function described as Equation (32), the Jacobian matrix can be easily computed.
And, with the face-based data structure, the resulting Jacobian matrix can be conveniently separated
into block diagonal part, lower block triangular part and upper block triangular part

Jlow =D + L + U (33)

where the subscript low indicates that the Jacobian matrix comes from the low-order dissipative
flux function. Assuming that j<i in Equation (32), we obtain the L operator for cell i contributed
by cell j

Li j = 1

2|�i |T
−1
[
�F(Tu j )

�(Tu j )
− �∗I

]
�sT (34)

where �s is the area of the face shared by cells i and j. If j>i in Equation (32), then the U
operator is obtained. The diagonal block for row i of Jlow can be expressed as

Di =
(

�1
�t

+ 1

2|�i |
nf∑
k=1

�∗
k�sk

)
I (35)

which can be represented by a single scalar for each cell. To derive the above equation, we have
used the fact that

∑nf
k=1 nk�sk = 0 for closed polygons. Also, the time-dependent term is included

in D. Note that the viscous contributions to Li j and Di can be included in �∗ in the form of
�/(�‖�ri j ·n‖) (cf. Equation (25) and assuming ∇ui j = const. when evaluating the Jacobian.).

The preconditioning matrix is taken as the approximate LU-SGS factorization of Jlow, namely

P= (D + L)D−1(D + U) (36)

By comparing Equation (36) and Equation (33), we know that an extra term LD−1U appears
in Equation (36). For diagonally dominant and narrowband matrix, LD−1U is negligible. The
purpose of factorization (36) is to eliminate the need to invert the preconditioning matrix P. Right-
preconditioning is usually adopted in GMRES algorithm because with right-preconditioning, the
same residual as the original non-preconditioned system is minimized in the GMRES algorithm.
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By applying the right-preconditioning to the Jacobian-free GMRES solver, we obtain the new form
of Equation (30).

J̃P−1v≈[R(u + �P−1v) − R(u)]/� (37)

It has to be stressed that the function R in Equations (20), (30) and (37) is evaluated following the
second-order reconstruction procedure. Numerical experience has shown that using the Jacobian
matrix resulting from the lower-order, more dissipative flux function to precondition the Jacobian
matrix resulting from higher-order, more accurate flux functions will not compromise the final
solution. Even with this simple preconditioning matrix, the convergence of the GMRES solver can
be significantly improved.

Before Equation (37) can be implemented, v# =P−1v must be solved first. This can be done
by solving

Pv# = v (38)

for v#. Substituting Equation (36) into Equation (38) yields

(D + L)D−1(D + U)v# = v (39)

which can be solved in two steps in which the block forward sweep

(D + L)v∗ = v (40)

is followed by the block backward sweep

(D + U)v# =Dv∗ (41)

In Equations (40) and (41), the L and U operators are computed when needed, thus completely
eliminating the need to store the preconditioning matrix. Therefore, the current FV solver for the
momentum equation is truly matrix-free.

4. MATRIX-FREE FINITE ELEMENT SOLVER FOR THE POISSON EQUATION

Within each physical timestep, we have to solve a Poisson equation (7) for q ′, the incremental
auxiliary variable. Since the Poisson equation is of elliptic type, it can be best discretized using
the node-based Galerkin FE method.

With the help of linear nodal basis functions, we can express q ′ at any location in the domain
using the solutions at nodes

q ′ =
nn∑
i=1

�i q
′
i (42)

The basis function is Lagrangian defined in each element. Therefore, the resulting q ′ field is
elementwise linear for triangles or bilinear for quadrilaterals with C0 continuity on element borders.

The variational form of Equation (7) is obtained by multiplying Equation (7) with the shape
function and integrating by parts∫

�
∇� · ∇q ′ d�= ��1

�t

∫
�

∇� · ũ d� +
∫

�
�
(
n · ∇q ′ − ��1

�t
n · ũ

)
d� (43)
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Taking the boundary condition Equation (9a) into account, we have∫
�

∇� · ∇q ′ d�= ��1
�t

∫
�

∇� · ũ d� − ��1
�t

∫
�D+�n

�n · ũ d� (44)

Note that on �N , q ′ is specified according to Equation (9b) and hence �N does not appear in
Equation (44). Also note that usually only the inflow boundary will provide a non-zero contribution
to the boundary integral in Equation (44). The discretization expressed in Equation (44) leads to a
linear equation system with the stiffness matrix as the coefficient matrix. The system is again solved
by the GMRES solver. To save memory, we are not forming the global stiffness matrix. Instead, we
follow a matrix–free implementation in [20]. This implementation is memory efficient at the price of
repeated computation of the matrix–vector product. At the current status of implementation, we use
the simple diagonal preconditioner as in [20]. We have to admit that this simple preconditioning
is not effective enough in practical applications. We have to use a relatively large size (say
100) of the Krylov space in the GMRES solver to ensure sufficient convergence of the Poisson
system.

Recall that the velocity unknowns are stored at element centres while the auxiliary variable is
stored at vertices. After q ′ is obtained through Equation (44), the velocity at the centre of element
i can be updated (i.e. corrected or projected) according to

un+1
i = ũi − �t

��1

nen∑
k=1

q ′
k∇�k (45)

where nen is the number of nodes of element i.
The node-based auxiliary variable is simply updated via

qn+1 = qn + q ′ (46)

The pressure at the centre of element i can be updated in a similar way to Equation (42) (also
cf. Equation (12))

pn+1
i =

nen∑
k=1

[qnk + q ′
k − �(∇ · ũ)k]�k (47)

The pressure field updated in this way is free of unphysical oscillations and unphysical boundary
layers, as will be verified through numerical tests in Section 6. As can be seen in Equation (47),
the accuracy of the pressure depends not only on the accuracy of the auxiliary variable, but also
on the accuracy of the node-based evaluation of the velocity divergence. ∇ · ũ must be computed
in a reliable way to ensure the accuracy of the pressure. We will address this issue in the next
section.

5. MORE IMPLEMENTATION DETAILS

For completeness and clarity, we provide some more implementation details in this section. These
details include the way to compute the velocity gradients inside each cell and a reliably way to
compute the solution and its derivatives at vertices.
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5.1. Velocity gradients inside the cell

To compute the velocity gradients inside each cell, either least square method or Gauss theorem
can be used. In our earlier implementation [21], we use the least square method based on the
solution at vertices of the cell. However, we found that the Gauss theorem implementation is more
efficient on distributed-memory computers and yields as good results as the least square method
and adopted it in our more recent implementation [13]. The Gauss theorem states that for each
component of the velocity u, denoted by u, at cell i

∇ui = 1

|�i |
nf∑
k=1

uk Aknk (48)

where uk is the interpolated solution at the kth face centre. uk is obtained by taking the arithmetic
average of the interpolated solutions at vertices. Ak and nk are the area and outward unit normal
of kth face, respectively. Hence, the key is to compute the solution at vertices accurately. Since the
solution is only known at cell centres, we must use some type of interpolation method to obtain
the solution at mesh nodes. We used the pseudo-Laplacian averaging in our compressible solver
[13, 21]. However, we realize the method described in the next sub-section is more useful because
it not only provides the solution itself at nodes, but also the gradient information at nodes. Recall
that from Equation (47), we need the gradient information to compute the velocity divergence.

5.2. Solution and its derivatives at vertices

The interpolation method is based on the least square minimization and was first proposed by Zhu
and Zienkiewicz [22]. This method has been proven to lead to superconvergent recovery of nodal
derivatives. We assume the solution at the small vicinity region surrounding a specific node varies
linearly (cf. Figure 3), i.e.

u = a + bx + cy (49)

The three unknown coefficients in Equation (49) are determined through the least square method,
i.e. minimizing the sum of the squares of u(xi ) − uhi where xi is the location of the centre of
cell i surrounding the vertex, u(xi ) is computed according to Equation (49) and uhi is the known
solution at the centre of cell i. Standard least square method leads to the following symmetric

interior node boundary node

cell center 

vertex 

face center 

Figure 3. Stencil to compute the solution and its derivatives at a vertex.
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equation system:

⎡
⎢⎢⎢⎢⎢⎣

N
∑
i
xi

∑
i
yi

∑
i
xi

∑
i
x2i

∑
i
xi yi

∑
i
yi

∑
i
xi yi

∑
i
y2i

⎤
⎥⎥⎥⎥⎥⎦
⎡
⎢⎣
a

b

c

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

∑
i
ui

∑
i
ui xi

∑
i
ui yi

⎤
⎥⎥⎥⎥⎥⎦ (50)

where N is the number of cells surrounding the vertex. Equation (50) can then be solved for the
coefficients a, b and c. The derivatives of u are simply

ux = b and uy = c (51)

For interior nodes, the linear assumption is sufficient to provide accurate recovery of the solution
and its derivatives. However, we found for boundary nodes, it is essential to assume the solution
varies bilinearly for better accuracy of solution derivatives, i.e.

u = a + bx + cy + dxy (52)

To provide sufficient supporting stencil, we can add the face centres as shown in Figure 3 where
two cell centres plus two face centres are adequate for bilinear reconstruction. The derivatives of
u can be computed according to

ux = b + dy and uy = c + dx (53)

If the stencil is not sufficient to support the bilinear reconstruction, which is possible at the
corners of the computational domain, we should have to resort to the linear reconstruction.

6. NUMERICAL EXAMPLES

In this section, we present several numerical experiments to demonstrate the performance of the
current hybrid scheme.

6.1. Case I: a case with analytical solution

This problem has been studied in [23, 24] to validate an incompressible flow solver. We use this
problem to numerically verify the spatial and temporal convergence rates of the current hybrid
solver.

According to [23], the two-dimensional incompressible NSE are numerically solved on a unit
square domain �= [0, 1] × [0, 1]. The Reynolds number is 100. The analytical solution is given by

u(t, x, y) = (t + 1)2x2(1 − x)2(2y − 6y2 + 4y3)

v(t, x, y) = (t + 1)2y2(1 − y)2(−2x + 6x2 − 4x3)

p(x, y) = x2 − y2

(54)
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Figure 4. Initial solutions of Case I. Left: pressure; mid: velocity and right: vorticity.

Substituting the exact solution into the incompressible NSE, we can obtain the required body
force field, g= (g1, g2), as follows

g1(t, x, y) = 2(t + 1)x2(1 − x)2(2y − 6y2 + 4y3)

+ u(t + 1)2(2y − 6y2 + 4y3)(2x − 6x2 + 4x3)

+ v(t + 1)2x2(1 − x)2(2 − 12y + 12y2)

− 0.01(t + 1)2(2y − 6y2 + 4y3)(2 − 12x + 12x2)

− 0.01(t + 1)2x2(1 − x)2(−12 + 24y) + 2x (55a)

g2(t, x, y) = 2(t + 1)y2(1 − y)2(−2x + 6x2 − 4x3)

+ u(t + 1)2y2(1 − y)2(−2 + 12x − 12x2)

+ v(t + 1)2(2y − 6y2 + 4y3)(−2x + 6x2 − 4x3)

− 0.01(t + 1)2y2(1 − y)2(12 − 24x)

− 0.01(t + 1)2(−2x + 6x2 − 4x3)(2 − 12y + 12y2) − 2y (55b)

The initial conditions at t = 0 are the following velocity and pressure fields:

u0 = x2(1 − x)2(2y − 6y2 + 4y3)

v0 = y2(1 − y)2(−2x + 6x2 − 4x3)

p0 = x2 − y2

(56)

and no-slip condition (u= 0) is applied on all boundaries. As can be seen from Figure 4, the
velocity field is an anticlockwisely rotating vortex. The body force acts as the driving force to
increase the velocity magnitude with time. The pressure field remains unchanged with time.

We want to use this case to demonstrate the rates of spatial and temporal convergence of the
present hybrid scheme. Figure 5 shows the quadrilateral and triangular meshes we used for this
purpose. The triangular mesh has the same characteristic element size as the quadrilateral one. First
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Figure 5. Meshes for Case I. Left: 20× 20 quadrilateral mesh; right: unstructured
triangular mesh with the same edge size.

Table I. Rate of spatial convergence on quadrilateral meshes.

Mesh size h ‖errm‖ r ‖errp‖ r

0.05 0.53235E−07 — 0.25007E−07 —
0.025 0.37310E−08 3.83 0.30310E−08 3.04
0.0125 0.29247E−09 3.67 0.22693E−09 3.74
0.00625 0.19940E−10 3.87 0.13155E−10 4.11

�t = 0.0001.

we define the following RMS error norms for momentum and pressure, respectively, to measure
the differences between the numerical solution and the analytical solution

‖em‖=
√∑ne

i=1 [(uh − ue)Ai ]2 + [(vh − ve)Ai ]2
ne

and ‖ep‖=
√∑ne

i=1 [(ph − pe)Ai ]2
ne

(57)

where the superscripts ‘h’ and ‘e’ represent numerical solution and analytical solution, respectively.
‘ne’ is the number of elements and Ai is the area of each element. The solutions are those at
element centres.

To demonstrate the spatial convergence rate, we subdivide the initial coarse mesh isotropically
to obtain a series of finer meshes. To ensure the spatial discretization error will dominate over
the temporal error, we use a small timestep, �t = 0.0001, and run 100 timesteps on each of these
meshes. Tables I and II tabulate the error norms and the corresponding convergence rates on all
meshes. The order of convergence is computed according to

r = log(‖e‖h+1/‖e‖h)
log 0.5

(58)

with the subscript ‘h’ denoting the grid refinement level. As can be seen, the current scheme is
apparently superconvergent at least for this case, which is quite surprising because the scheme
was designed to be only second-order accurate in space. We also observe the similar convergence
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Table II. Rate of spatial convergence on triangular meshes.

Mesh size h ‖errm‖ r ‖errp‖ r

0.05 0.20035E−06 — 0.77954E−07 —
0.025 0.10106E−07 4.31 0.41594E−08 4.23
0.0125 0.33023E−09 4.94 0.23846E−09 4.12
0.00625 0.10998E−10 4.91 0.14516E−10 4.04

�t = 0.0001.

Figure 6. Rate of temporal convergence. Left: quadrilateral mesh and right: triangular mesh.

rates for both velocity and pressure. However, this spatial superconvergence phenomenon needs
further investigation.

We also demonstrate the temporal convergence rate of the current hybrid scheme in Figure 6.
To ensure the spatial discretization error is small compared with the temporal error, we use very
fine meshes for this purpose. The fine meshes are obtained by isotropically subdividing the meshes
shown in Figure 5 three times. As can be seen in Figure 6, both BDF1 and BDF2 yield expected
rates of convergence for both momentum and pressure. Exceptions occur when the timestep is
small and the temporal error becomes comparable with the spatial error.

The correct rates of temporal convergence of pressure justify the need to use Equations (12)
and (47) to update the real pressure. We can further justify this by looking at the error graphs shown
in Figure 7. Note that the vertical heights in Figure 7 represent the errors between the numerical
solution and the exact solution. For the graphs about the auxiliary variable and the pressure, the
vertical axis has been scaled by 5000 and for the graph about the velocity divergence, the vertical
axis has been scaled by 100. Clearly, both the auxiliary variable and the velocity divergence show
an artificial boundary layer. It is this boundary layer that causes the loss of accuracy. The pressure
error is nearly ideally smooth without any visible boundary layer. The smoothness of the pressure
error is crucial to the correct temporal convergence rate. This, on the other hand, verifies that the
method described in Section 5 accurately compute the velocity divergence even at boundaries.

6.2. Case II: lid-driven cavity problem (Re= 1000)

The lid-driven cavity flow is a well known benchmark problem extensively used to validate an
incompressible flow solver. Despite the simple geometry, the lid-driven cavity flow exhibits quite
complex physics such as the vortex pattern on the recirculating corners of the cavity depending on
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Figure 7. Solution errors of Case I on 40× 40 quadrilateral mesh. Left: auxiliary variable;
mid: velocity divergence and right: pressure.

Figure 8. Mesh and solutions for Case II. Left: 48× 48 quadrilateral mesh,
Re= 1000; mid: vorticity and right: pressure.

the Reynolds number. Steady solution exists for Reynolds number up to 21 000. We use the current
hybrid solver to simulate the case with Re= 1000 on three consecutively refined quadrilateral
meshes on the [0, 1] × [0, 1] domain. The coarsest mesh consists of 24× 24 quadrilaterals and is
shown in Figure 8. The grid lines are clustered near the four corners and walls of the cavity. The
top of the cavity is the moving lid with u = 1.0 and v = 0.0. The remaining boundaries are no-slip
boundary with u = v = 0.0.

Since we are seeking steady-state solutions, only one non-linear iteration is performed for the
momentum equation within each physical timestep. We run 1500 timesteps on the two coarser
meshes with �t = 0.075 and 2000 timesteps for the finest 96× 96 mesh with �t = 0.05. The
momentum residual drops about 5.5 orders or magnitude for all three runs. Figure 8 shows the
48× 48 mesh and the computed vorticity and pressure fields. The pressure field is smooth without
unphysical wiggles seen. Figure 9 shows the residual convergence history on the 48× 48 mesh.
We conclude that the current hybrid scheme converges well for steady-state simulations.

We also compare our solutions with the most referenced solutions by Ghia et al. [25]. Figure 10
shows the u-velocity along the vertical midline and the v-velocity along the horizontal midline,
compared with the reference values. As can be seen, with increasing refinement of the mesh,
the present solution matches the reference solution that was obtained on a mesh finer than all
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Figure 9. Residual convergence history on 48× 48 quadrilateral mesh.

meshes we are using. The solution obtained on the 96× 96 mesh already agrees very well with
the reference solution.

6.3. Case III: flow around circular cylinder (Re= 100)

Now we turn to a non-stationary problem. This case is taken from one of the benchmark problems
proposed in [26]. This case is about a laminar incompressible flow around a circular cylinder placed
in a channel. Abundant numerical results obtained via various numerical solvers are tabulated
in [26]. Therefore, this problem has been widely accepted as a standard test case to verify
and validate an incompressible solver. The geometry and boundary conditions are illustrated in
Figure 11. Since no-slip boundary conditions are applied at the top and the bottom walls of the
channel, a special parabolic inflow velocity profile must be given to account for the zero velocity
at the inlet tips of both walls. According to [26], the velocity profile is

u(0, y, t) = 4um y(H − y)/H2, v = 0

with um = 1.5m/s and H = 0.41m as the height of the channel. The mean velocity at inflow is
Ū = 2um/3= 1.0m/s. The Reynolds number based on the mean velocity is 100. At this Reynolds
number, the flow behind the cylinder is expected to become non-stationary and periodic Karman
vortex shedding should be seen.

As shown in Figure 12, the mesh used here is an unstructured quadrilateral one consisting of
14 568 cells and 14 876 nodes. The total number of unknowns is 29 136 for velocity and 14 803
for pressure. There are 100 points on the cylinder surface and the mesh thickness of the first layer
next to the cylinder is 0.001m. We start from the initial condition given by the inlet velocity
profile everywhere. The size of the Krylov space for the momentum equations is 20. The timestep
used in this simulation is 0.002 s. At this timestep, at least three order of magnitude drop of
momentum residual can be reached with two or three non-linear iterations within each timestep.
The Poisson equation is solved with 100 Krylov vectors and considered converged when five orders
of magnitude of residual is dropped. We have run 4150 timesteps to reach the final time t = 8.3 s.
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Figure 10. Velocity along the horizontal and vertical mid-line on three meshes of different refinement.

Figure 13 shows the numerical solutions at an instant corresponding to a flow state with maximum
lift. The periodic Karman vortex street can be clearly seen from these figures. Figure 14 shows the
drag and lift coefficients histories with time. As can be seen, the flow enters the stable periodic
state as early as t ≈ 4 s. Figure 15 provides a close-up view of the drag and lift histories within a
lift period starting from t = 7.936 s. The period for the lift vs time is 0.338 s that is twice the period
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inlet outlet

u = v = 0

u = v = 0

2.2m

D = 0.1m

0.15m

0.16m

0.15m

x

y

(0, 0)

(0, H)

Figure 11. Geometry and boundary conditions for Case III.

Figure 12. A portion of the unstructured quadrilateral mesh for Case III.

Figure 13. Solutions of Case III. Top: velocity magnitude; mid: pressure and bottom: vorticity.
The instant corresponds to the flow state with cLmax.
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Figure 14. Drag and lift histories for Case III.

Figure 15. Drag and lift histories within a lift period for Case III.

Table III. Comparison between the present solutions and the reference
solutions [26] for Case III.

cDmax cLmax St �p

Reference Lower bound 3.22 0.99 0.295 2.46
Upper bound 3.24 1.01 0.305 2.5

Present 3.215 1.0374 0.2959 2.4687

for the drag vs time. From Figure 15, we can also observe that the phase of the drag coefficient is
a little away from that of the lift coefficient. To quantitatively compare the present solution with
those available in [26], we compute the maximum drag coefficient cDmax, maximum lift coefficient
cLmax, the Strouhal number St = D/(TŪ ) and the pressure difference �p between the front and
rear stagnation points on the cylinder surface at t = t0 + 0.5T where t0 corresponds to the flow
state with cLmax and T is the period of the lift vs time curve. cDmax and cLmax are computed as
the average of the last 20 and 10 periods, respectively. Table III lists the results. The comparison
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shows that the present Strouhal number and pressure difference are within the lower bound and
the upper bound provided in the reference, and the drag and lift coefficients also agree favourably
with the reference values.

7. CONCLUSIONS

In this paper, we present a detailed description of the development of a hybrid FV/element solver
for laminar incompressible NSEs on unstructured meshes. The current solver belongs to a pressure-
correction or projection method. A segregated approach is used to decouple the pressure from the
velocity. A fractional step method is adopted to compute the velocity field. An intermediate velocity
is first obtained by solving the original momentum equations with the cell-centred FVM. The FV
solver is fully implicit and truly matrix-free using the Jacobian-free GMRES solver together with
the matrix-free LU-SGS preconditioner. The fractional step leads to the Hodge decomposition of
the intermediate velocity into the sum of a divergence-free velocity field and a curl-free vector
field that is the gradient of an auxiliary variable. The auxiliary variable is closely related to the
real pressure. A Poisson equation is derived from the Hodge decomposition and is solved by
the node-based Galerkin FEM for the auxiliary variable. The auxiliary variable is used to update
the velocity field and the pressure field as well. To annihilate the artificial pressure boundary
layer, the update of the pressure must take the discrete velocity divergence into account. Since the
velocity and the auxiliary variable are stored at different locations on the mesh, the current scheme
is considered as a staggered-mesh scheme. However, it is unlike the conventional staggered grid
scheme because it uses a different storage scheme.

A test case with analytical solutions demonstrates the superconvergence feature of the current
scheme in space for both velocity and pressure. However, this superconvergence phenomenon
needs further investigation and analysis. More importantly, the temporal convergence exhibits the
correct rates (first order for BDF1 and second order for BDF2) for both velocity and pressure. The
test on the classic lid-driven cavity problem shows that the current hybrid solver generates accurate
velocity profiles inside the cavity. The test also shows the solver converges well for steady-state
simulations. A more practical test case of the flow passing around a circular cylinder placed in a
channel further verify that the current solver is accurate in predicting the force coefficients and
the Strouhal number.

All test cases shown in this paper are of relatively low Reynolds number flows in which it is
unnecessary to employ any types of slope limiter for stability purpose. However, in high Reynolds
number flows, the boundary layer is very thin and velocity gradients are so high that it may
become necessary to employ a slope limiter or other stabilization techniques to ensure the stability
of the solver. We are currently investigating the performance of the current hybrid solver for high
Reynolds number flows and will report the results in a future paper.
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